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Abstract

Purpose – The purpose of this paper is to present an engineering inviscid-boundary layer method
for the calculation of convective heating rates on three-dimensional non-axisymmetric geometries at
angle of attack.
Design/methodology/approach – Based on the axisymmetric analog, convective heating rates are
calculated along the surface streamlines which are determined using the inviscid properties
calculated on an unstructured grid.
Findings – Since the method is capable of using inviscid properties calculated on an unstructured
grid, it is applicable to a variety of configurations and it requires much less computational effort than
a Navier-Stokes code. The results of the present method are evaluated on different wing body
configurations in laminar and turbulent hypersonic equilibrium flows. In comparison to experimental
data, the present results are found to be fairly accurate in the windward and leeward regions.
Practical implications – With this approach, heating rates can be predicted on general three-
dimensional configurations at hypersonic speeds in an accurate and fast scheme.
Originality/value – In order to calculate the heating rates at any specific point on the surface, a
technique is developed to calculate the inviscid surface streamlines in a backward manner using the
inviscid velocity components. The metric coefficients are also calculated using a new simple
technique.
Keywords Aerodynamics, Heating, Aircraft
Paper type Research paper

Nomenclature

d average of three cell edge
lengths

h streamline metric coefficient

H enthalpy

M Mach number

N turbulent velocity profile
exponent

n1, n2, n3 vertices of a triangular cell

pr Prandtl number

P pressure

q surface heat flux

r axisymmetric body radius

R recovery factor

Rn nose radius

Re Reynolds number

St Stanton number

s coordinate along streamline

T temperature

u, v, w surface velocity components in
the Cartesian coordinate system

x, y, z Cartesian coordinate system

xs, ys, zs starting point coordinates
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� angle of attack

� boundary layer thickness

� boundary layer momentum
thickness

� density

� viscosity

Subscripts

aw adiabatic wall

e boundary layer edge

ie surface cell

iv surface node

L laminar

T turbulent

w wall

1 free stream condition

1. Introduction
The calculation of aerodynamic heating rates on hypersonic vehicles remains a
challenging problem. Such analysis often involves multidimensional geometries with
leading-edge bluntness and fuselage-wing combinations with arbitrary cross sections.
In addition, at hypersonic flight conditions the dissociation of air at high temperatures
and its effects on the surface heating must be taken into account (Anderson, 1989).
Numerical simulation of full compressible Navier-Stokes equations for three-
dimensional flow fields is still not economic for preliminary design of these vehicles
where a range of geometries and flow parameters are to be studied. A review of
literature shows that to reduce this huge amount of computational effort, Cooke (1961)
developed a simple method for calculation of three-dimensional viscous flow, using
axisymmetric analog. Following this approach, the general three-dimensional
boundary layer equations are written in a streamline coordinate system having
neglected the cross-flow velocity. This reduces the three-dimensional boundary layer
equations to a form that is identical to those of axisymmetric flow, provided that the
distance along a streamline is interpreted as the distance along an ‘‘equivalent body’’.
In addition, the metric coefficient that describes the spreading of streamlines is
interpreted as the radius of an equivalent body. This allows the existing axisymmetric
boundary layer codes to be used for the calculation of the approximate three
dimensional heating rates along a streamline. In lieu of numerically integrating the
axisymmetric boundary layer equations, a set of approximate convective-heating
equations developed by Zoby et al. (1981) is used to even more reduce the
computational difficulties and its costs.

In order to apply the axisymmetric analog for computation of heating rates on three-
dimensional bodies, the inviscid surface streamlines and the metric coefficients should
be calculated. Practically, the most difficult part of applying axisymmetric analog is the
computation of inviscid surface streamlines and metric coefficients (DeJarnette et al.,
1978). Several investigators (Riley and DeJarnette, 1990, 1991, 1992a, b; Riley, 1992;
Riley et al., 1998; Karimian and Mahdizadeh, 2001; Malekzadeh et al., 2003) have used
Maslen method (Maslen, 1964, 1971) to calculate approximate inviscid flow field
properties, but this method was found to be too complicated to be used in three-
dimensional cases (DeJarnette et al., 1978). DeJarnette and Davis (1968) calculated the
streamlines emanating from the stagnation point by a fairly simple method. These
streamlines are consistent with the Newtonian concept that a fluid particle loses its
normal component of momentum upon striking a body surface. DeJarnette and
Hamilton (1973) developed a simple method for calculating streamlines from a known
pressure distribution. However, this approach is difficult to be applied, unless the
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surface geometry and pressures can be described analytically (DeJarnette et al., 1978).
More success has been achieved when the streamline information is derived from
velocity components on the surface obtained from complete three-dimensional inviscid
flowfield calculations (Hamilton et al., 1987, 1993; Parhizkar and Karimian, 2006).

Hamilton et al. (1987) developed an engineering method based on the axisymmetric
analog for 3-D heating rate calculation. In their approach, heating is calculated along
the each individual streamline, starting from its origin at the stagnation point to the
end of the body. If this approach is used for a wing-body combination, large regions of
the wing surface are often missed and not covered by the selected streamlines (see
Figure 1).

Repeating the process of selecting proper starting point for new streamlines to
cover the missed regions is a tedious task and mostly not successful. To resolve this
problem, Hamilton et al. (1993) redistributed the streamlines at some computational
steps downstream of the stagnation point. With this approach, Riley predicts
aeroheating of X-34 reusable launch vehicle (Riley et al., 1998).

In the previous methods (Riley et al., 1998; DeJarnette and Davis, 1968; DeJarnette
and Hamilton, 1973; Hamilton et al., 1987, 1993; Parhizkar and Karimian, 2006), the
inviscid streamlines and the streamline metrics were obtained from the inviscid
solution calculated on a structured grid. However, inviscid solution can be obtained for
more complex geometries, using unstructured grids. As it is reported in Dyakonov and
DeJarnette (2003), the application of axisymmetric analog to unstructured grid was
started in unfinished research by Riley and DeJarnette. It was in this reference that
Dyakonov and DeJarnette used inviscid flow properties obtained from an unstructured
grid to calculate streamlines and metric coefficients. But due to the difficulties
encountered in the application of their method, their code called UNLATCH were
limited to solution of simple blunt cones. It was in the recent paper of Hamilton and
DeJarnette (Hamilton et al., 2006) in 2006 that a new code called UNLATCH2 was
developed to compute heating rates on more complex configurations using
unstructured grids.

In the present work, a new technique is developed to calculate the inviscid surface
streamlines and streamline metrics from the inviscid properties calculated on an
unstructured grid. The present formulation is completely different from the previous
works and less complicated than them and it involves fewer interpolations than them.
Started from the specific point on which the heating rate is required, its corresponding
streamline is traced backward to its stagnation point. The streamline metrics are
calculated from the normal distance between two streamlines at each point. After

Figure 1.
Surface streamlines

starting from stagnation
region for a wing-body

configuration
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determination of the correct streamline for the selected point and metric coefficients,
the Zoby’s approximate convective heating equations are integrated from the
stagnation point along this streamline to yield the aeroheating rate on the started point.
The present method is simple and easy to use for computer codes and is capable of
computing the laminar and turbulent heating rates on the windward and leeward
surfaces of any three dimensional bodies with minimum user intervention.

2. Approximate convective heating equations
The Zoby’s approximate convective heating equations (Zoby et al., 1981) are obtained
from the integral form of the axisymmetric boundary layer momentum equation
(White, 1974). Having applied the reference enthalpy method (Eckert, 1955) (for
compressibility effects) and the Reynolds analogy (White, 1974) to the integral form of
the momentum equation, the approximate convective heating equations are given
below. The equations for laminar flow are as follows (DeJarnette et al., 1978):

qwL ¼ 0:22ðRe�LÞ�1 ��

�e

� �
��

�e

� �
�eVeðHaw � HwÞðprwÞ�0:6 ð1Þ

The variables of �� and �� are introduced to consider the compressibility effects. These
variables are evaluated at the Eckert’s reference enthalpy (Eckert, 1955) defined as:

H � ¼ 0:50He þ 0:50Hw þ 0:22R
V 2

e

2
ð2Þ

The momentum-thickness Reynolds number is defined as:

Re�L
¼ �eVe�L

�e
ð3Þ

In which, �L, the laminar boundary layer momentum thickness is:

�L ¼
0:644

Ð s

0 �
���Ver

2ds
� �1=2

�eVer
ð4Þ

The adiabatic wall enthalpy is defined as:

Haw ¼ He þ 0:5RV 2
e ð5Þ

In which the recovery factor is equal to Pr1=2 for laminar flow and equal to Pr1=3 for
turbulent flow (White, 1974). Similar equations are developed for the turbulent flow
(Zoby et al., 1981):

qwT ¼ c1ðRe�TÞ�m ��

�e

� �
��

�e

� �m

�eVeðHaw � HwÞðprwÞ�0:4 ð6Þ

�T ¼
c2½
Ð s

0 �
���mVer

c3ds�c4

�eVer
ð7Þ
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The coefficients of m; c1; c2; c3 and c4 are functions of N, which is the exponent of the
power-law turbulent velocity profile (Zoby et al., 1981), and are given by:

m ¼ 2

N þ 1
c3 ¼ 1þm

c1 ¼
1

c5

� �2N=Nþ1
N

ðN þ 1ÞðN þ 2Þ

� �m

c4 ¼
1

c3

c2 ¼ ð1þmÞc1 c5 ¼ 2:2433þ 0:93N

ð8Þ

A turbulent velocity profile of V=Ve ¼ ðy=�Þ1=N is assumed to calculate the required
constants and exponents in the equations of momentum-thickness Reynolds number
and the convective heat flux. Experimental results ( Johnson and Bushnell, 1970) show
that N would be a function of Re�T

. Fitting a curve to the turbulent experimental data
(Zoby et al., 1981) produces the following equation:

N ¼ 12:67� 6:5LogðRe�TÞ þ 1:21½LogðRe�TÞ�2 ð9Þ

For the perfect gas model, the viscosity is obtained using the Sutherland formula
(White, 1974), and the specific heat ratio and Prandtl number are assumed to be the
constant values of 1.4 and 0.71 for air, respectively. The thermal conductivity, however,
is obtained from the definition of Prandtl number.

The mixture thermodynamic and transport properties of chemically reacting
equilibrium air are provided in the form of tables by Tannehill and Mugge (1974). In
this paper enthalpy H( p, T) and density �ð p;TÞ are interpolated from the tabular data.
However, the transport properties of viscosity and thermal conductivity are
interpolated from the tables provided by Hansen (1958). The Prandtl number is
calculated using viscosity, thermal conductivity, and the mixture specific heat which
obtained by numerical differentiation of enthalpy data. In Simeonides (1998), it has
been shown that the Eckert’s reference enthalpy formulation (Equation (2)) is still valid
for equilibrium air. It should be noted that the values of �� and �� must be evaluated at
the thermodynamic properties of the Eckert’s reference enthalpy (H �) and the edge
pressure (pe) (Simeonides, 1998).

Having known the values of pressure, temperature and the velocity magnitude at
the edge of boundary (i.e. Pe, Te and Ve) from the inviscid solution, the heating rates
can be calculated on the surface of body, from either Equation (1) or (6). This completes
the calculation procedure for axisymmetric bodies.

The above equations are derived for attached boundary layer, based on the integral
form of the axisymmetric boundary layer equations. Therefore they cannot predict the
peak heating which occurs in the vicinity of boundary layer reattachment. In the case
of flow separation, full Navier-Stokes equations should be solved around the vehicle
(Hillier and Soltani, 1995; Mehta, 2000; Mulas et al., 2002; Soltani et al., 1993).

3. Axisymmetric analog
The laminar flow equations of (1)-(5) and the turbulent flow equations of (6)-(9) are
derived for axisymmetric flow. These relations may be applied to 3-D flow using the
axisymmetric analog (Zoby et al., 1981) approximation. The axisymmetric analog
assumptions allow the axisymmetric boundary layer relations given above to be used
in a surface streamline coordinate system provided that the following substitution is
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made: r ¼ h; where h is the scale factor describing the divergence of the surface
streamlines (Zoby et al., 1981).

4. Inviscid surface streamlines
Any unstructured inviscid code can be used in this method to determine the inviscid
solution properties on the body surface. The format of data that should be exported to
a file include a set of xiv; yiv; ziv; uiv; viv;wiv;Piv and Tiv values for all the surface nodes,
and a set of n1ie; n2ie and n3ie for the all of surface cells. We know that surface
streamlines emanate from the stagnation region and spread out all over the body
surface. It is very difficult to start a streamline path from the stagnation point and have
it passed through a specific point on the body surface, on which the heating rate is
needed. To resolve this difficulty, a procedure is developed to trace the streamline from
the specific point backward to a point very close to the stagnation point. This can be
done easily by reversing the sign of velocity components in the above procedure. A
reversed process then can be started from the calculated point in the stagnation region
to re-trace the streamline toward the specific point while computing heating rates
along the streamline.

Here we describe the procedure. Starting from a specific starting point of p1(xs, ys,
zs), three triangles are formed by connecting p1 to the three corners of each cell, e.g.
n1; n2 and n3 in Figure 2. The starting cell would be the one that its area (S ) is equal to
the area of these triangles, i.e. as shown in Figure 2, S ¼ S1þ S2þ S3.

Streamline direction is equal to the velocity direction at point p1. This direction is
determined from the linear interpolation of the cell vertex velocities. Second node of the
streamline would be the intersection of the streamline and the cell edge. Since the
velocity components are obtained from interpolation scheme, the streamline direction
would not be exactly tangent to the cell surface when crossing its edges. Therefore, the
streamline direction may not intersect any of the cell edges in 3-D space. This problem
is resolved by intersecting the projection of streamline direction with the cell edges, as
shown in Figure 3. In this figure the coordinates of p1 are xs, ys and zs, and p2 is
located at xsþ u=V � d; ysþ v=V � d and zsþ w=V � d. Point p2 then is projected on
cell (n1; n2; n3 ) surface to define point p3. In this situation, the line connecting p1-p3
surely intersects the cell edge at a point called p4. Now the line of p1� p4 would be the
streamline passing from point p1.

To ensure that the point p4 is correctly detected, all intersections between the line of
p1� p3 and three edges of cell should be examined. The correct intersection point of p4
should meet the following criteria, (a) summation of distance between p4 and the two

Figure 2.
Determination of the
starting cell, Left:
S1þ S2þ S3 > S and
right: S1þ S2þ S3 ¼ S
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vertices of the corresponding edge is equal to the edge length, i.e. L1 þ L2 ¼ L, and (b)
s-coordinate of the intersection point is greater than the starting point (Figure 4).

The above procedure is repeated from p4 as the new starting point. The velocity
components at this point are interpolated linearly from the velocities at the n1 and n2

vertex points. Two comments should be made here, (a) depending on the direction
along which streamline is calculated (toward stagnation or toward specific point), the
sign of velocity components should be set, and (b) the point very close to the stagnation
point in the stagnation region, is determined when the surface slip velocity is less than
a very small predefined value.

5. Metric coefficient
The most difficult part of applying axisymmetric analog technique is computing the
metric coefficient associated with the spreading of the streamlines. DeJarnette and
Hamilton (1973) developed a simple method for computing the streamline metric
coefficient from a known surface pressure distribution. The application was limited to
simple body shapes. They developed the new method (Hamilton et al., 1987) in 1987
and used surface velocity distribution for calculating metric coefficients on windward
surface of space shuttle orbiter. Hamilton et al. (1993) modified their method and
developed a code called LATCH (Langley Approximate Three-Dimensional Convecting
Heating). This code assumes that the inviscid flowfield properties were computed on a
single block structured mesh with a generalized body fitted coordinate system. The

Figure 4.
Intersection between

streamline and cell edges

Figure 3.
Streamline tracing points
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application was shuttle orbiter with simplified leeside plane. It was in 1998 that Riley
et al. (1998) calculate X-34 windward and leeward heating rates using LATCH.

In 2006, Hamilton et al. (2006) developed an unstructured version of LATCH called
UNLATCH2. In their code, starting with the approximate solution on the epsilon curve
around stagnation point, the solution at the grid points at the vertices of the stagnation
triangle are computed along with several other grid points in the vicinity of the
stagnation point denoted by the grid points enclosed in circles in Figure 5. Next the
solution is computed at grid points on both the lower and upper symmetry planes of
the body. Once solutions at grid points around the stagnation point and on the
symmetry plane have been computed, the solutions at all the other grid points
downstream of the stagnation point are performed. Having known the solution at grid
points 1 and 2 of the triangular element shown in Figure 6, solution at grid point 3 can
be computed. Starting at point 3 the streamline passing through 3 is integrated
backwards in space and the point 4 is determined where it intersects the opposite side
of the triangle (the line connecting points 1 and 2). The initial conditions at this point
including @y=@�; @z=@�;Fx;Fy;Fz, u, v, w and � are computed from the known
solutions at points 1 and 2. Then the streamline, metric and heating equations are
integrated forward in space to complete the solution at point 3. The derived formula for
calculating streamline metric in Hamilton et al. (2006) is:

Figure 5.
Solution strategy of
UNLATCH2 at grid
points in stagnation
region
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h� cos � ¼ ðvFx � uFyÞð@y=@�Þ þ ðwFx � uFzÞð@z=@�Þ
FxV

ð10Þ

In the present study, Instead of the streamline metrics, the parameter of hd� is
calculated. This parameter is the perpendicular distance between adjacent streamlines
(Dyakonov and DeJarnette, 2003). It can be calculated using a neighbor streamline.
This neighbor streamline is started from a location near the starting point (which
heating rate is needed on it) and is traced back to the stagnation point. The scale factor
at a node like pi , as indicated in Figure 7, multiplied by d� would be the distance
between two streamlines that is perpendicular at node pi (Dyakonov and DeJarnette,
2003). At any node like pi , the parameter of h�d� can be easily calculated, since it would
be equal to the distance between pi and pn. Point pn is a point on neighbor streamline
with a s-distance equal to that of pi . The parameter of hd� now can be calculated, since
h�d� is known and angle � can be determined using known coordinates of pi�1; pi; pn:

hd� ¼ h�d� sinð�Þ ð11Þ

Since we calculate hd� , replacing of body radius with hd� would not cause any problem
if d� is constant along the streamline. This is true since � is constant along each
streamline. As seen in Equations (4) and (7), the body radius, which should be replaced
by h in axisymmetric analog, appears in nominator and denominator with the same
power. Therefore the calculated value of hd� can be used instead of metric coefficient.
In this condition, Equations (4) and (7) are changed to the following equations,
respectively:

Figure 6.
Solution strategy of

UNLATCH2 at grid point
downstream of stagnation

region
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�L ¼
0:644

Ð s

0 �
���Veðhd�Þ2ds

h i1=2

�eVehd�
ð12Þ

�T ¼
c2

Ð s

0 �
���mVeðhd�Þc3 ds

� �c4

�eVehd�
ð13Þ

In complex 3-D geometries, some streamlines are not started from the nose stagnation
point. For example in Figure 1, nose streamlines do not cover most of the wing surface.
In fact, the streamlines on the wing have local stagnation points on the wing leading
edge (Figure 8). Our scheme, in which streamlines are traced back, recognizes these
local stagnations. The flow over the wing is nearly two dimensional and the Zoby’s
convective equations are also 2-D in the case of h ¼ 1. Therefore, in the present
technique, the metric coefficients are set equal to one along the streamlines which is
initiated from the wing leading edge.

Figure 8.
Wing streamlines for a
wing-body configuration

Figure 7.
Scale factor definition
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6. Results
In order to demonstrate the capability and accuracy of the present method, surface
heating rates are calculated for laminar and turbulent conditions over 3-D wing-body
configurations. As it was mentioned previously, any unstructured Euler code can be
used to produce the required inviscid surface properties for the present method. The
unstructured Euler code used in the present study is based on the Roe’s flux splitting
method [?]. Details about the number of grids and the solution will be given for each
case.

6.1 Laminar flow over the elliptic cone (case 1)
The perfect gas, laminar flow over a blunted 2:1 elliptic cone is examined at angle of
attack of 15 deg. The cone angles in the windward and side planes are 5 and 9.93 deg,
respectively. The freestream conditions are M1 ¼ 10:19; �1 ¼ 0.0193 kg/m3 and
T1 ¼ 51:1�K. The wall temperature is Tw ¼ 261�K and the nose radius in the side
plane is Rn ¼ 0.0254 m. Since the flow is symmetric about the mid plane of vehicle,
only half of the solution domain is considered for this analysis. About 70,000 cells are
used to generate the unstructured grid needed for the inviscid solution. This grid
includes 3,000 triangular cells on the body surface. It is noted that based on the
numerical tests performed by the authors, grid independent results are obtained on
this grid.

Surface heating rates calculated by the present method are compared with the
results of the approximate method of Riley and DeJarnette (1992a, b), the thin layer NS
method of Riley and DeJarnette (1992a, b) and the experimental data of Hillsamer and
Rhudy (1964). Circumferential surface heating rates are depicted in Figures 9-11 at
three axial locations on the body. Similar to the present method, the Riley’s
approximate method uses axisymmetric analog and Zoby’s convective equations.
However the approximation made in the inviscid solution limits the application of
Riley’s method to windward surface of the blunt cones. As it is shown, present results
agree very well with the experimental data on both windward and leeward regions of
the body. However, there are some discrepancies between the present results and the
experimental data at the location of x=Rn ¼ 9:7. This difference is also seen between

Figure 9.
Comparison of

circumferential surface
heating rates for 2:1

ellipsoidal cone at
x=Rn ¼ 2:2
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the results from LAURA and the experimental data and perhaps it is because of some
transitional flow effects in the downstream of the body.

6.2 Turbulent flow over the wing of X-15 hypersonic airplane (case 2)
The X-15 was a rocket-powered aircraft that was used by NASA to test hypersonic
flight conditions in the 1960s. As is seen in Figure 12, it has a configuration with many
three-dimensional details. The available experimental data of heating rates (Quinn and
Olinger, 1969) over this airplane makes it a suitable case for comparison purposes. An
unstructured grid with 194,000 cells is used to calculate the inviscid properties on the
half part of the solution domain. The number of cells on the body surface is 30,000.

Turbulent heat transfer coefficients over windward and leeward regions of the wing
midspan are compared with the flight data in this case. In this paper, geometry details
of X-15 are taken from Quinn and Olinger (1969). Two sets of flight conditions are

Figure 11.
Comparison of
circumferential surface
heating rates for 2:1
ellipsoidal cone at
x=Rn ¼ 9:7

Figure 10.
Comparison of
circumferential surface
heating rates for 2:1
ellipsoidal cone at
x=Rn ¼ 4:7
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considered. The first condition corresponds to M1 ¼ 5:1; � ¼ 2�;P1 ¼ 4,550 Pa and
T1 ¼ 217�K. For the wall temperature we have used its reported data in Quinn and
Olinger (1969), which varies along the wing chord. Comparison of Stanton numbers
along the wing chord are shown in Figures 13 and 14. Excellent agreement is seen
between the present results and the flight data in both windward and leeward regions.

Second set of flight conditions corresponds to M1 ¼ 4:98; � ¼ 16:3�;P1 ¼ 2,540 Pa
and T1 ¼ 223�K. The wall temperature is variable and its value is read from the
reported data in Quinn and Olinger (1969). Comparison of Stanton numbers along the
wing chord are shown in Figures 15 and 16. In this case, some fluctuations are seen in
the flight data, especially in the leeward region. This may be due to the turbulent effect in
the high angle of attack conditions in this case. The present inviscid-boundary layer
method, can not predict these fluctuations. However, the overall agreement between the
present results and the flight data is good.

In the previous case, it was shown that the present method is capable of predicting
the heating rates over complex geometries. The reason is that the present method can
use the inviscid results of unstructured grids; a mesh which is suitable for modeling of

Figure 13.
Comparison of Stanton

number on lower surface
of X-15 wing for the first

set of flight conditions

Figure 12.
View drawings of X-15

hypersonic aircraft
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complex geometries. It should be noted that inviscid-boundary layer methods which
use the approximate inviscid solution (Zoby et al., 1981; Riley and DeJarnette, 1992a, b;
Riley, 1992; Malekzadeh et al., 2003; Maslen, 1964, 1971) are not able to predict heating
rates over arbitrary complex geometries. Also low supersonic flows can not be studied
with them. However the present method can easily calculate low supersonic heating
rates over wing-body combinations. To demonstrate this, the wing section of a rocket-
propelled model is considered in the next case.

6.3 Turbulent surface heating rates for the X-34 (case 3)
The X-34 is a reusable, sub-orbital test vehicle developed at NASA (Pamadi, et al., 2000;
Kleb et al., 1998). As seen in Figure 17, its length is 17.6 m with a wing span of 8.46 m.

Figure 15.
Comparison of Stanton
number on lower surface
of X-15 wing for the
second set of flight
conditions

Figure 14.
Comparison of Stanton
number on upper surface
of X-15 wing for the first
set of flight conditions
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Surface heating rates are examined along the windward symmetry line, and three axial
locations of this vehicle at M1 ¼ 6; � ¼ 15:22�;P1 ¼ 651 Pa and T1 ¼ 234�K. The
locations of these three cross-sectional cut planes are shown in Figure 18.

Aerodynamic heating of X-34 has been analyzed in NASA Langley Research Center
using engineering code of LATCH (Pamadi et al., 2000), and the full Navier-Stokes CFD
code of LAURA (Kleb et al., 1998). In Figure 19, turbulent heating rate distribution
obtained from the present method at the windward symmetry plane is compared with
the results of LATCH and LAURA. As it is seen, the present results are obtained on
three different unstructured grids with 89,000, 201,000 and 524,000 cells. In each case,
about 10 per cent of the cells are located on the body surfaces. The differences between
results calculated on these three grids are very small and therefore the grid with 89,000
cells would be an appropriate grid for this calculation. In comparison with the LAURA
code, the present method slightly overpredicts the heating rates at front part and
underpredicts it at the rear part of X-34 windward symmetry plane. However the
overall accuracy of the present results is better than the LATCH code and stays within

Figure 17.
View drawings of X-34

Figure 16.
Comparison of Stanton

number on upper surface
of X-15 wing for the

second set of flight
conditions
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15 per cent of LAURA code. The difference between the present results and LATCH
code is because of the different methods used for metric coefficients. Also probable
small different inviscid results may cause some differences between two results.

In Figures 20-22, turbulent heating rates are compared with Langley’s results on a
grid with 89,000 cells. Having considered the complexities in the geometry of X-34, the
present method predicts reasonably good surface heating rates. In comparison with
the LATCH code, the present results in windward plane are in better agreement with
the results of LAURA code.

The required inviscid properties of the present method are obtained from an Euler
solution. Therefore total CPU time for this method is more than the CPU time required

Figure 19.
Grid refinement results of
turbulent heating
distribution at windward
centerline on X-34

Figure 18.
Locations of three cross
sectional cut planes
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in the methods which use approximate inviscid solution. However, the total CPU time
of the present method is still much less than the CPU time of a full Navier-Stokes
solution. Therefore on complex geometries, where engineering methods using
approximate inviscid solutions are not applicable, the present method has advantages
in comparison to full Navier-Stokes solution, when talking about CPU time. The
reasonably accurate results of present method for 3-D vehicles make this method an
excellent design tool for hypersonic prediction of aerodynamic heating.

Figure 21.
Lateral turbulent heating

distribution on X-34 at
x ¼ 7.62 m

Figure 20.
Lateral turbulent heating

distribution on X-34 at
x ¼ 3.81 m
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7. Conclusion
A procedure for evaluating surface heating rates for three-dimensional non-
axisymmetric geometries at angle of attack is developed. This axisymmetric analog
based procedure uses three-dimensional inviscid properties calculated on an
unstructured grid to trace streamlines, and uses Zoby’s approximate convective-
heating equations for heating rate computation. A simple technique is also presented to
calculate the metric coefficient for general cases. The procedure is applied to the
prediction of heating rates over 3-D bodies and wing configurations. Good agreements
are obtained between predictions and experimental data in both windward and
leeward regions of different complex geometries of wing-body combinations in the
absence of flow separation.
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